تعيين بهينه زمانهاى سوئيچچينگَ كنترلر بنگَ - بنگَ براى سيستم نامعين جر ثقيل سقفى

سيدعلى معافى ؛، مجتبى معصومنزاد
1 - دانشجوى دكترى، مهندسى مكانيك، موسسه آموزش عالى احرار، رشت

اطلاعات مقاله
مقاله بثروهشى كامل
دريافت: 26 آبان 1394
پֶيرش: 06 فروردين 1395
ارائه در سايت: 29 ارديبيشت 1395
كليد وأركّان:
جرثقيل سقفى
نويز
فيلتر كالمن
الكوريته
كتنرلر بنگى - بنى

مقايسه شرايط سيستم در نسبتهاى جرمى مختلف پرداخته شده است. نتايج شبيهسازى بيانگر عملكرد بهينه الگوريتم كالمن بهبود يافته

Optimal Switching Times of Bang-Bang Controller for Uncertain Overhead Crane System

Seyed Ali Moafi ${ }^{1}$, Mojtaba Masoumnezhad ${ }^{2 *}$
1- Mechanical Engineering Department, Ahrar Institute of Technology and Higher Education, Rasht, Iran.
2- Mechanical Engineering Department, Chamran Faculty of Technical and Vocational University, Rasht, Iran
*P. O. B. 3756 Rasht, masoumnezhad@tvu.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 17 November 2015
Accepted 25 March 2016
Available Online 18 May 2016

Keywords:
Overhead Crane
Noise
Filter Kalman
Genetic Algorithm
Bang-Bang Controller

Abstract

These days overhead crane is widely used in different industries such as automobile, harbor, navigation and also transportation of tools in storerooms. Most models which are done through industrial dynamic systems include some vitiated parameters with noise and disturbance and overhead crane model is no exception. Disturbance in system can be due to its model or measuring tool. Kalman filter is a practical method in order to recognize the model and also filtration of disordered data. Given that overhead crane is a nonlinear model, asymmetric sigma-point Kalman filter improved by genetic algorithm (GA-ASKF) is intended to estimate system parameters. One of the common ways to controlling overhead crane parameters is using controlling force, Bang-Bang. By the way, function of Bang-Bang controller depends on controlling force switched times. In this paper, besides using this controller, its switched times are found by using genetic algorithm for noisy system. The design aim is to achieve the target point in minimum time with minimum error. Also, by considering Bang-Bang controller entrance part, the article compares the situation of the system in different mass relativeness. Simulation results shows improved performance of the GA-ASKF algorithm to determine the switching time of controller and also achieve the target point in minimum time.

عملكرد آن توسط پثوهشگران پیيادهسازى شده است [3,2]. در اين ميان يكى
 بنگگ
 جهت عملكرد مطلوب موقعيت و سرعت گارى و پاندول پرداخته شده است.
${ }^{1}$ Bang-Bang

1 - مقدمه
كنترل سيستمهاى ديناميكى پر كاربرد در صنعت از ديرباز مورد توجه بسيارى
 صنايع، شرايط مختلف كارى آن تاكنون توسط محققان مورد بررسى قرار گرفته است [1]. در شرايطى كه جرثقيل سقفى داراى مدل دينان ديناميكى غيرخطى و متغير با زمان است، روشهاى مختلف كنترلى جهت بهريبود

پارامتر α بهصورت جداگانه بهعنوان نسبت جرم بار به جرم گارى تعريف

3- فيلتر كالمن نامتقارن بهبـوديافته با النَـوريتم زنتيكى (GA-ASKF)
مدل ديناميكى زمان گسسته براى يك مسئله فيلتر ينگَ غيرخطى بهصورت
روابط $(4,3)$ تعريف شده است [1].
$x_{k+1}=\mathrm{f}\left(x_{k}, u_{k}\right)+w_{k}$
$y_{k}=\mathrm{h}\left(x_{k}\right)+v_{k}$
$v_{k}{ }^{\prime} W_{k}$ و بردار متغيرهاى حالت سيستم، x_{k}
مقادير نويزهاى گوسى سفيد و بهصورت رابطه (5) است.
$w_{k}=N(0, Q)$, $v_{k}=N(0, \mathrm{R})$

Fig. 1 Overhead crane model

نتيجه انتخاب بهترين زمانهاى سويئجّشدن نيرو در كنترلر بنگ- بنگى،
 بهينهسازى انتخاب زمانهاى سوئيحينگى به كمك الگَوريتم زنتيكى مد نظر قرار گرفته شده است. در چند دهه گَذشته توجه بسيارى از مهندسين كنترل به حل تقر تريبى مسائل معطوف شده است تا بتوانند از دادههاى اندازهگيرى مشده داراى نويزين، مقدار واقتى متغير حالت را تخمين زنند و از معروفترين روشها

 آن ارائه شده است [10,9]. در اين گونها
 مطلوب شده است. در [12,11] از فيلتر كالمن توسعهيافته براى تخمين

 [13]. معصومنزاد و همكارانش براى نخستين بار فيلتر كالمن نامتقارن بهبوديافته با الكور يتم زنتيك (GA-ASKF) را ارائه كردند [14]. در اين فيلتر از الكوريتم رنتيك براى انتخاب بهينه تركيب نامتقارن نقاط سيگما استفاده شده، به كونهاى كه بهكاركيرى كير اين تكنيك سبب كمينهشدن ميانگين مجذور خطاى تخمين شده است. در مرجع [15] متغيرهاى
 آنسنتد ${ }^{2}$ (UKF) تخمين زده شده است. با اين حال نويسندگان آن براى

 حالت طول كابل ثابت و طول كابل متغير درنظر گرفته شده و مد مدلسازی
 از فيلتر GA-ASKF براى تخمين پارامترهاى سيستم نامعين جر ثقيل سقفى

 سوئيحينگ نيروى كنترلى، بهعنوان متغير طراحى در برينى دينهسازى رفتار مناسب مشخصههاى سيستم ديناميكى جر ثقيل سقفى درنظر كر كرفته شدهاند

 در قالب جداول و نمودار ها ارائه شده است.

[^0]$\hat{y}_{k}^{-}=\sum_{i=0}^{2 L} \omega_{i}^{(m)} h\left(\chi_{i, k-1}\right)$

هستند.

(22-18) است.
$P_{k \mid k-1}^{y y}=\sum_{i=0}^{2 L} \omega_{i}^{(C)}\left[\mathrm{h}\left(\chi_{i, k-1}\right)-\hat{y}_{k}^{-}\right]\left[\mathrm{h}\left(\chi_{i, k-1}\right)-\hat{y}_{k}^{-}\right]^{\mathrm{T}}$
$P_{k \mid k-1}^{x y}=\sum_{i=0}^{2 L} \omega_{i}^{(C)}\left[\chi_{i, k-1}-\hat{x}_{k}^{-}\right]\left[\mathrm{h}\left(\chi_{i, k-1}\right)-\hat{y}_{k}^{-}\right]^{\mathrm{T}}$
$K_{k}=\left(P_{k \mid k-1}^{x y}\right)\left(P_{k \mid k-1}^{y y}\right)^{-1}$
$\hat{x}_{k}=\hat{x}_{k}^{-}+K_{k}\left(y_{k}-\hat{y}_{k}^{-}\right)$
$P_{k}=P_{k}^{-}-K_{k} P_{k \mid k-1}^{y y} K_{k}{ }^{\mathrm{T}}$
به ترتيب مقادير كراس - كووار يانس 1 خطاى بين بردارهاى حالت و مشاهدهگر و ضريب كالمن

4 - ييادهسازى سيستم ديناميكى جر ثقيل سقفى

در اين مرحله جهت بررسى مقاوم بودن مدل جرثقيل سقيل سقفى به رابطه
 از فيلتر كالمن كه فيلتر برگشتى كارا ست نويز سيستم فيلتر سيلتر شده و مشخصههاى پالايششده مورد بررسى قرار مى گییرند. مدل ديناميكى زمان كسسته سيستم جرثقيل سقفى بهصورت رابطه (23) است.
$\left[\begin{array}{l}x_{1, k+1} \\ x_{2, k+1} \\ x_{3, k+1} \\ x_{4, k+1}\end{array}\right]=\left[\begin{array}{c}x_{2, k} \times d t+x_{1, k} \\ \ddot{d} \times d t+x_{2, k} \\ x_{4, k} \times d t+x_{3, k} \\ \ddot{\theta} \times d t+x_{4, k}\end{array}\right]+\left[\begin{array}{c}w_{1} \\ w_{2} \\ w_{3} \\ w_{4}\end{array}\right]$
مقادير موقعيت و سرعت گارى و همحخنين موقعيت زاويهاى و سرعت
 قابل حصول است. بردار حالت و بردار مشاهدهكر به ترتيب در روابط (25,24) آورده شده است.
$x_{k}=[d, \dot{d}, \theta, \dot{\theta}]^{\mathrm{T}}$
$y_{k}=[d, \theta]^{\mathrm{T}}$
نويز فرآيند ${ }^{\text {W }}$ و نويز مشاهدهگر ماتريسهاى كوواريانس آنها به ترتيب در روابط $(27,26)$ نشان داده شده است. $Q=0.001 \times \operatorname{diag}\{1,1,1,1\}$
$R=0.01 \times \operatorname{diag}\{1,1,1,1\}$
رابطه (23) نمايش فرم گسسته فضاى حالت سيستم است. در واقع سيستم در بازه صفر تا به بازههايى با طول $d t=0.02$ تقسيم شده و و به شكل كس كميت

 بنابراين مشتق اول طول كابل و مشتق دوم آن نيز برابر با صفر مىشود

 $\lambda(t)$ حالت بالم پايين بردن بار تحليل شده است. در اين حالت فرمول

حول نقطهاى كه در مرحله پيشين تخمين زده شده اجرا مى شــود. در حـــلى

 جديد با مشخصات آمارى تكرار پيشين يكسان خواهد بود. cost function $=\frac{1}{L} \times \operatorname{norm}\left(\hat{x}_{k}-x_{k}\right)^{1 / 2}$
$+\left[\operatorname{norm}\left(\operatorname{mean}\left(\chi_{i, k-1}\right)-\hat{x}_{k-1}\right)+\operatorname{norm}\left(\operatorname{Var}\left(\chi_{i, k-1}\right)\right.\right.$ $\left.\left.-\left(P_{i, k-1}\right)\right)\right]^{1 / 2}$
بنابراين الكَوريتم GA-ASKF شامل جهار مرحله است كه به شرح زير

مرحله نخست شرايط اوليه و به صورت روابط (8,7) است.
$\hat{x}_{0}=\mathrm{E}\left(x_{0}\right)$
$P_{0}=\mathrm{E}\left(x_{0}-\hat{x}_{0}\right)\left(x_{0}-\hat{x}_{0}\right)^{\mathrm{T}}$
ولي P_{0} به تر تيب مقادير بردار حالـت نخسـتين و كوواريـانس خطـاى اوليه هستند.

 محدوده يا فضاى جست و جو براى يــافتن نقـاط سـيگِما بـيـن [100,100-1 تنظيم شده است؛ بنابراين محاسبه نقاط سيگِماى نامتقارن بهصـورت روابـط (13-9) است.
$\chi_{0, k-1}=\hat{x}_{k-1}$
$\chi_{i, k-1}=\hat{x}_{k-1}+\zeta_{i} \sqrt{P_{i, k-1}}$
$\omega_{0}^{(m)}=\frac{\varphi}{(L+\varphi)}$
$\omega_{0}^{(C)}=\frac{\varphi}{(L+\varphi)}+\gamma$
$\omega_{i}^{(m)}=\omega_{i}^{(C)}=\frac{1}{2(L+\varphi)}$
$2 L$
مقادير نقاط سيگماست كه براساس مقادير ميانگّين $\hat{\text { م }}$ كوواريانس P بردار حالت در تكرار پيشين تبديل آنسنتد مرتبط با i امين نقطه سيگماست.
مرحله سوم بهروزر رسانى در زمان و به صورت روابط (14-17) است.
$\chi_{i, k \mid k-1}=\mathrm{f}\left(\chi_{i, k-1}, u_{k}\right.$
$\hat{x}_{k}^{-}=\sum_{i=0}^{2 L} \omega_{i}^{(m)} \chi_{i, k-1}$
$P_{k}^{-}=\sum_{i=0}^{2 L} \omega_{i}^{(C)}\left[\chi_{i, k-1}-\hat{x}_{k}^{-}\right]\left[\chi_{i, k-1}-\hat{x}_{k}^{-}\right]^{\mathrm{T}}$

[^1]به عملكرد مطلوب سيستم است. عملكرد نيروى كنتر لى تحت شرايط بهينه درنظر گرفته شده، پايدارى سيستم را تضمين مى كند، اجزاى سيستم را را را با كمترين خطا به نقطه هدف مىرساند و اين امر را را در كمترين زمان به به انجام
خواهد رساند.
-1-5 - بهينهسازى با درنظر ترفتن نويز در حالت طول كابل ثابت
 حالت طول كابل ثابت با توجه به ثابتبودن طول برابر صفر خواهند شد. كميتهاى جرم گارى، جرم بار و و شتاب كران ترتيب برابر است. در اين شرايط روابط غيرخطى (2,1) بهعنوان روابط سيستم، آغثته به
 الكَوريتم GA-ASKF قرار مى گیيرند. بحث كمينهسازى تابع ارزش رابطه (30) تحت الگَوريتم NSGAII در نرمافزار متلب پيادهسازى شده است.

 نفر، ضريب جهش انطباقى'، تقاطع 1.2^{2} و 300 نسل بوده است. در شكل 3 نمودار تغييرات ميانگَين و بهترين تابع ارزش بهينهسازى در طول بول نسل نشان
 بعد از 60 نسل، در نمايش دادن مقادير تابع ارزش، به بازه 100 نسل ابـي ابتدايـي
 1 آور ده شده است.
لازم به ياد است كه مقادير مشخصشده در جدول 1 همان درايههاى

 نشان داده شده است. به در ستى مشاهده مىشو زمان آورده شده در جدول 1 تغيير مى كند. سيستم جرثقيل سقفى بهصورت

Fig. 3 Variation of cost function during the generation for fixed length system

$$
\text { شكل } 3 \text { نمودار تغييرات تابع ارزش در طول نسل براى سيستم طول كابل ثابت }
$$

در آن روابط قيود بهصورت رابطه (29) بهكار رفته است.
$\lambda_{\text {min }}=\lambda\left(p \tau_{f}\right)=1 ، \lambda(0)=0=a_{20}$
$\lambda(0)=\lambda_{0}=a_{10} ، \lambda\left(p \tau_{f}^{+}\right)=\lambda\left(p \tau_{f}^{-}\right) ، \lambda\left(\tau_{f}\right)=\lambda_{f}$
در رابطه بالا نيز ضريب p محل آغاز حركت به سمت بالا و ايايين كابل را
 كمينه طول كابل است.
 مدل آن بهصورت تابع در شكل 2 آور ده شده است. زمانهاى سوئيحينگ درنظر گرفته شده كه همان ماتريس متغير طراحى بهيننهسازى در الگَوريتم زُنتيك است.
تابع ارزش مسئله بهينهسازى بهصورت روابط $(31,30)$ تعريف شده

Cost Function $=$ Penalty $+w \times\left(\tau_{f}\right)$
در آن penalty بهصورت رابطه (31) درنظر كرفته شده است.

Penalty $=\operatorname{abs}\left(y-y_{d}\right)$

$$
\begin{equation*}
+\operatorname{abs}(\dot{y}-0)+\operatorname{abs}(\theta-0)+\operatorname{abs}(\dot{\theta}-0) \tag{31}
\end{equation*}
$$

 توسط كارى كه در اين مسئله برابر 14.7 متر است. سه جمله آخر سمت راست رابطه (31) نشان مىدهند كه مقادير مرير مطلوب سرعت كارى ماري، موقعيت
 برابر صفر است؛ بنابراين جمله نخست در در رابطه (30) تضمين خرين خواهين كارى و پاندول در مكانيزم جرثقيل سقفى
 زمان ممكن درنظر گرفته شده است.

5 - نتايج
در اين بخش به تحليل سيستم جرثقيل در دو حالت طول كابل ثابت و طول
 يا نويز است كه به كمك الگور يتم فيلتر كالمن پالايش شده شده است، علاوهبر آن،

Fig. 2 Schematic of Bang-Bang controller input
شكل 2 شماتيك ورودى كنترل بنگ- بنگَ

[^2]

Fig. 6 Variation of crane velocity with fixed length for the presence and absence of the Kalman filter and noiseless condition

$$
\begin{aligned}
& \text { شكل } 6 \text { تغييرات سرعت كارى با طول كابل ثابت در حضور و حضور نداشتن فيلتر } \\
& \text { كالمن و شرايط بدون نويز }
\end{aligned}
$$

Fig. 7 Variation of load angular position with fixed length for the presence and absence of the Kalman filter and noiseless condition شكل 7 تغييرات موقعيت زاويهاى بار با طول كابل ثابت در حضور و حضور نداشتن فيلتر كالمن و شرايط بدون نويز

Fig. 8 Variation of load angular velocity with fixed length for the presence and absence of the Kalman filter and noiseless condition
شكالمن فيلتر و شرايط بديرات سرعت زاويه ای بار با طول كابل ثابت در حضور و نداشتن حضور

سوئيحینگگ براى عملكرد بهينه كنترلر، حاصله از الگوريتم زنتيكـ است. اختلاف رفتار سيستم مخدوش نسبت به سيستم بدون اغتشاش براى دو حالت حضور فيلتر كالمن و غياب آن در شكل 11 نشان داده شده است. در شرايطى كه اعداد استفاده شده در نمودار شكل 11 مقدار ميانگين خطاهاى بىبعدشده چهار متغير سيستم در طول زمان شبيهسازى به روشنى
 پارامترهاى سيستم مىتوان خطاى سيستم مخدوش نسبت به حالت مطلوب

جدول 1 زمانهاى سوئيحینگگ بهينه براى جرثقيل سقفى با طول ثابت
Table 1 Optimal switching time for overhead crane with fixed length

$\alpha=0.2$	τ_{a}
2.883	τ_{b}
4.559	τ_{c}
6.395	τ_{f}
9.7	

جداگانه، در نبود اغتشاش اجرا شده و رفتار متغيرهاى آن تحت نيروى كنترلى بنگَ- بنگَ بهدست آمده است. تغييرات متغيرهاى سيستم جرثقيل سقفى در طول زمان، براى دو حالت حضور و حضور نداشتن فيلتر كالمن با رفتار سيستم مطلوب در شكل هاى 5-10 مقايسه شده است. در اين شكلها نزديكبودن رفتار سيستم مخدوشى كه در آن از فيلتر GA-ASKF استفاده شده به عملكرد سيستم مطبوب به روشنى نمايان است؛ بنابراين نتايج بهدستآمده بيانگر ضرورت استفاده از فيلتر كالمن براى سيستمهاى مخدوش

جهت تخمين متغيرهاى حالت و دستيابى به عملكرد مطلوب است. نمودارهاى تغييرات متغيرهاى حالت سيستم جرثقيل سقفى نشان مىدهد كه درصورت وجود اغتشاش در سيستم، فيلتر كالمن GA-ASKF به درستى و با دقت بالاتر نسبت به حالت بدون فيلتر قادر است كه متغيرهاى حالت سيستهم را تخمين بزند. البته اين نمودارها بهجاى استفاده از زمانهاى

Fig. 4 Bang-Bang controller force obtained from ptimization of overhead crane with fixed lenght
شكل 4 نيروى كنترلى بنگً- بنگَ حاصل از بهينهسازى جرثقيل سقفى با طول كابل

Fig. 5 Variation of crane position with fixed length for the presence and absence of the Kalman filter and noiseless condition

شكل 5 تغييرات موقعيت گارى با طول كابل ثابت در حضور و حضور نداشتن فيلتر
كالمن و شرايط بدون نويز

هيجگاه از عدد يكى تجاوز نكرده است كه اين امر بيانگر عملكرد مطلوب روش

 2 مقايسه شده است كه نشان مىدهد ميزان خطا براى حالتى كه از از فيلتر كالمن GA-ASKF استفاده مىشود مقدار كمترى است؛ بنابراين فيلتر كالمن توانسته است اثرات نامطلوب ناشى از وجود اغتشاش در سيستم را حدودى برطرف نمايد.

2-5 - 5 - بهينهسازى با درنظر ترفتن نويز در حالت طول كابل متغير

 كنترلى تعيين شده است. اين امر با بهينهسازى زمانی

 برده شده، عملكرد پايدار و دقيق سيستم مخدوش جرثقيل سقفى رانی است.

دي در اين بخش سيستم جرثقيل در حالت حركت به با بالا/ پايين مدل شد شده است
 انجام گرفته است. (به عبارت ديگر ضريب α برابر 0.4 است.

 50 نفر، ضريب جهش انطباقى، تقاطع 1.2 و 300 نسل انجام شده انـي است است.

 اشكال 12-17 نشان داده شدهاند. در اينجا نيز فيلتر كالمن استفاده شده

GA-ASKF
جدول 2 مقايسه ميانگّين خطا براى طول كابل ثابت در حضور و نداشتن حضور فيلتر كالمن
Table 2 comparison of mean error for fixed length in the presence or absence of the Kalman filter

ميانگين خطاى بعدشده 0.3292	GA-ASKF با حضور فيلتر خضور فيلتر كالمن
0.6852	

جدول 3 زمانهاى سوئيحينگ بهينه براى جرثقيل سقفى با طول متغير
Table 3 Optimal switching time for overhead crane with variable length

$\alpha=0.4$	زمانهاى سويئحينگ
3.244	τ_{a}
4.798	τ_{b}
6.214	τ_{c}
10	τ_{f}

Fig. 9 Variation of crane velocity relative to crane position with fixed length for the presence and absence of the Kalman filter and noiseless condition

Fig. 10 Variation of load angular velocity relative to load angular position with fixed length for the presence and absence of the Kalman filter and noiseless condition

شكل 10 تغييرات سرعت زاويهاى بار نسبت به موقعيت زاويهاى آن با طول كابل ثابت در حضور و نداشتن حضور فيلتر كالمن و شرايط بدون نويز

Fig. 11 Variation of the mean of dimensionless error of noisy system than ideal system for the presence and absence of the Kalman filter

شكل 11 تغييرات ميانگين خطاى بىبعدشده سيستم مخدوش نسبت به سيستم ايدهآل در دو حالت حضور و نداشتن حضور فيلتر كالمن
آن را به كمينه رساند.

در نمودار شكل 11 نشان داده شده كه مقدار اختلاف بىبعدشده رفتار سيستم مخدوش نسبت به سيستم ايدهآل در طول مدت زمان اجراى آن

Fig. 15 Variation of load angular velocity with variable length for the presence and absence of the Kalman filter and noiseless condition
شكل 15 تغييرات سرعت زاويهاى بار با طول كابل متغير در حضور و نداشتن حضور فيلتر كالمن و شرايط بدون نويز

Fig. 16 Variation of crane velocity relative to crane position with variable length for the presence and absence of the Kalman filter and noiseless condition

$$
\text { شكل } 16 \text { تغييرات سرعت گارى نسبت به موقعيت آن با طول كابل متغير در حضور }
$$

و نداشتن حضور فيلتر كالمن و شرايط بدون نويز

Fig. 17 Variation of load angular velocity relative to load angular position with variable length for the presence and absence of the Kalman filter and noiseless condition

شكل 17 تغييرات سرعت زاويهاى بار نسبت به موقعيت زاويهاى آن با طول كابل متغير در حضور و نداشتن حضور فيلتر كالمن و شرايط بدون نويز شاخصههاى سيستم به خوبى و با كمترين ناميزانى نسبت به سيستم ايدهآل، مسير مطلوب را طى مى كنند. در حالى كه اين عملكرد مناسب در شرايطى كه از فيلتر كالمن استفاده نشده است، ديده نمىشود. بهعنوان اثبات ديگرى بر

Fig. 12 Variation of crane position with variable length for the presence and absence of the Kalman filter and noiseless condition

$$
\text { فيلتر كالمن و } 12 \text { تغييرات موقعيت گارى بدون با طول كابل متغير در حضور و نداشتن حضور }
$$

Fig. 13 Variation of crane velosity with variable length for the presence and absence of the Kalman filter and noiseless condition شكل 13 تغييرات سرعت گارى با طول كابل متغير در حضور و نداشتن حضور فيلتر كالمن و شرايط بدون نويز

Fig. 14 Variation of load angular position with variable length for the presence and absence of the Kalman filter and noiseless condition

$$
\text { شضور فيلتر كالمن } 14 \text { تغييرات موقعيت زاويهاى بار با طول كابل متغير در حضور و نداشتن }
$$

با بررسى نمودارهاى نشان داده شده به خوبى مىتوان تأثير عملكرد روش , GA-ASKF مشاهده كرد. با پيادهسازى الگَوريتم GA-ASKF على

به آن ذخيره شده است. خطاى مربوط به متغيرهاى حالت سيستم، هنگام قرار گرفتن بار در انتهاى مسير، براى تمامى اين 500 حالت اندازهگيرى،
 محاسبات در جدول 6 قابل مشاهده است. از مقايسه دادهماى موجود جدول 6 به خوبى مشخص است كه هرچپقدر وزي

 سقفى در هنگام كار با بارهاى سبك تر داراى عملكرد به مراتب مطلوبترى

6

 كمترين نوسان، بيشترين دقت و سريعترين زمان

 درنظر گرفتن اين زمانها بهعنوان متغير طراحى درى در الكَوريتم بهينينهسازى،
 جهت كميندسازى، اهداف طراحى را دنبال مى كند. در شرايطى كـي
 دادههاى مخدوش از GA-ASKF بهره گرفته و تأثير مطلوب اين فيلتر در پالايش دادههاى مخدوش به خوبى در نتايج و نمودارها ديده شانير شده، همحنين

 كمينهشدن زمان نهايى كاركرد جر ثقيل سقفى ديده شده است.

جدول 4 مقايسه ميانگًين خطا بىبعد شده براى طول كابل متغير در حضور و نداشتن حضور فيلتر كالمن
Table 4 Comparison of mean of dimensionless error for variable length in the presence and absence of the Kalman filter

ميانگين خطاى بى بعدهد	$\alpha=0.4$
0.2036	GA-ASKF با حضو فيلتر
0.8678	بدون حضور فيلتر كالمن

اين نتيجه گيرى، نمودار رفتار ميانگين خطاى بىبعدشده سيستم مخدوش
 در شكل 18 آورده شده است. در اينجا نيز مقادير اختلاف، در واقع ميانگين خطاهاى بىبعدشده متغيرهاى سيستم، شامل موقعيت و سرعت كارى، موقعيت زاويهاى ایلى و سرعت
 شبيهسازى، خطاى رفتار سيستم نسبت به شرايط ايدهآل آن، براى آى حالتى كالتى كه

 پيشنهادى استفاده شده است، تا حدود زيادى قابل قبول است، همحچنیين كميت ميانگَين مقادير خطا بى بعدشده در طول زمان بان براى دو حو حالت حضور و و نداشتن حضور فيلتر كالمن در جدول 4 مقايسه شده است كه نشا نشان مىدهد ميزان خطا براى حالتى كه از فيلتر كالمن GA-ASKF استفاده مىشود، مقدار كمترى است.

2-2-2-2 - 5

 شده است. در اين جدول زمانهاى سويئحينگَ انتخابى توسط الكَوريتم

 گرفتن بار در انتهاى مسير در جدول 5 آورده شده استير استي با با بررسى اين مقادير
 شده با روش انتخابى الكَوريتم رُنتيك توانسته است سيستم جرثي
 شامل مقادير مربوط به تابع ارزش فرآيند بهينهسازى براى هر يـى از نسبتهاى جرمى است.
براى مقايسه بهتر شرايط كارى جرثقيل سقفى تحت بارهاى مختلف،

 از فرآيند بهينهسازى هر بار تحت تأثير يكى از نويزها اجرا اجرا و اطلاعات مربوط

Table 5 Comparison of the fitueare of the system in different mass ratios

α	$\tau_{a}(\mathrm{~s})$	$\tau_{b}(\mathrm{~s})$	$\tau_{c}(\mathrm{~s})$	$\tau_{f}(\mathrm{~s})$	$y(\mathrm{~m})$	$\dot{y}(\mathrm{~m} / \mathrm{s})$	$\theta(\mathrm{rad})$	$\dot{\theta}(\mathrm{rad} / \mathrm{s})$	تابع إرز
0	2.715	4.609	6.05	9.38	14.67	-0.004	-0.061	0.021	0.1262
0.2	3.066	4.684	6.214	9.68	14.71	-0.006	-0.05	0.0371	0.1161
0.4	3.244	4.798	6.218	10	14.69	-0.008	-0.012	0.0015	0.042
0.6	3.388	4.967	6.389	10	14.7	-0.026	-0.002	-0.048	0.087
0.8	3.478	5.064	6.46	10.15	14.77	-0.006	-0.063	-0.0104	0.258
1.0	3.84	5.14	6.787	10.3	14.707	-0.0149	-0.054	-0.059	0.146

underactuated overhead cranes, IET Control Theory Application, Vol. 9, No. 12, pp. 1893-1900, 2015.
[4] M. S. Moon, Rule Based Approaches for Controlling Oscillation Mode Dynamic System, PhD Thesis, Department of Electronical Engineering, Virginia Polytechnic Institute and State University, 1997.
[5] N. Narimanzade, A. Bagheri, P. Aghaie Moghadami, Designing the Optimal Switching Time for Overhead Crane, The 11th Annual International Conference on Mechanical Engineering, Mashhad, Iran, May 13-15, 2003. (in Persian فارسى)
[6] M. Masoumnezhad, Efficient Control of An Overhead Crane Using Genetic Algorithm Methods. M.s Thesis, Department of Mechanical Engineering, University of Guilan, Rasht, 2005. (in Persian فارسى)
[7] A. Bagheri, N. NArimanzade, M. Masoumnezhad, Optimal Determination of the Crane Switching Time Using GA, The $13^{\text {th }}$ Annual International Conference on Mechanical Engineering, Esfahan, May 17-19, 2005. (in Persian فارسى)
[8] R.V. d. Merve, Sigma-point kalman filter for probabilistic inference in dynamic state space models, Ph.D. Thesis, OGI School of Science \& Engineering at Oregon Health \& Science University, Portland and Hillsboro, Oregon, 2004.
[9] R.V. d. Merwe, E. A. Wan, The Square-Root Unscented Kalman Filter for State and Parameter-Estimation. In Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 6, pp. 3461 3464, 2001.
[10] W. Li, Y. Jia, H-infinity filtering for a class of nonlinear discrete-time systems based on unscented transform. Signal Processing, Vol. 90, pp. 33013307, 2010.
[11] J. Wang, Ch. Song, X. Yao, J. Chen, Sigma Point H-infinity Filter for Initial Alignment in Marine Strap down Inertial Navigation System, 2nd International Conference on Signal Processing Systems (ICSPS), Vol. 1, pp. 580-584, 2010.
[12] M. Masoumnezhad, A. Moafi, N. Nariman-zadeh, Optimal Stimate of An Inverted Pendulum's State Variables Using Unscented H-infinity Filter, The $21^{\text {th }}$ Annual International Conference on Mechanical Engineering, Tehran, May 7-9, 2013 . (in Persian فارسى)
[13] M. Partovibakhsh, G. Liu, An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots, IEEE Transactions on Control Systems Technology, Vol. 23, No. 1, pp. 357-363, 2015.
[14] M. Masoumnezhad, A. Jamali, N. Nariman-zadeh, Optimal design of symmetrical/asymmetrical sigma-point Kalman filter using genetic algorithms, Transactions of the Institute of Measurement and Control, Vol. 37, No. 3, pp. 425-432, 2014.
[15] M. Masoumnezhad, N. Nariman-zadeh, Optimal stimation of state variables of an overhead crane using improved kalman filter, The 22nd Annual International Conference on Mechanical Engineering, Ahvaz, April 22-24, 2014. (in Persian فارسى)
[16] Yang C, Wang X, Li Z. An optimization approach for coupling problem of berth allocation and quay crane assignment in container terminal. Computers \& Industrial Engineering. Vol. 63, No.1, pp. 243-253, 2012.

$$
\text { نسبتهاى } 6 \text { ميانگين و و واريانس خطاى ستفاوت سيستم در ازاى جمعيت } 500 \text { تايى نويز براى }
$$

Table 6 Mean and variance of system dimensionless error as for category of 500 noises for different relative mass ratio

نسبت جرمى	ميانگ̌ين مجذور خطاى بى بعد شده	
	ميانگّين	واريانس
0	0.293021	0.0326
0.2	0.858719	0.2865
0.4	1.284773	0.7816
0.6	1.590058	1.26
0.8	1.832774	1.6535
1	2.243420	2.5793

Fig. 18 Variation of the mean of dimensionless error of noisy system than ideal system for the presence and absence of the Kalman filter

$$
\begin{aligned}
& \text { شكل } 18 \text { تغييرات ميانگين خطاى بىبعدشده سيستم مخدوش نسبت به سيستم } \\
& \text { ايدهآل در دو حالت حضور و نداشتن حضور فيلتر كالمن }
\end{aligned}
$$

$$
7 \text { - مر اجع }
$$

[1] Ch. Zhang, A. Hammad, Improving lifting motion planning and re-planning of cranes with consideration for safety and efficiency. Advanced Engineering Informatics, Vol. 26, No. 2, pp. 396-410, 2012.
[2] X. Zhang, Y. Fang, N. Sun, Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems With State and Control Constraints, IEEE Transaction on Industrial Electronics, Vol. 61, No. 12, pp.6915-6925, 2014.
[3] X. Wu, X. He, Enhanced damping-based anti-swing control method for

[^0]: Sigma point
 ${ }^{2}$ Unscented Kalman Filter

[^1]: ${ }^{1}$ Cross-covariance

[^2]: ${ }_{2}^{1}$ Adaptive Feasible
 ${ }^{2}$ Cross Over

